首页> 外文OA文献 >Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves I. Current correlation functions
【2h】

Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves I. Current correlation functions

机译:自由玻色子和tau功能,紧凑的黎曼表面和封闭   光滑的Jordan曲线I.当前的相关函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study families of quantum field theories of free bosons on a compactRiemann surface of genus g. For the case g > 0 these theories are parameterizedby holomorphic line bundles of degree g-1, and for the case g=0 - by smoothclosed Jordan curves on the complex plane. In both cases we define a notion oftau-function as a partition function of the theory and evaluate it explicitly.For the case g > 0 the tau-function is an analytic torsion [3], and for thecase g=0 - the regularized energy of a certain natural pseudo-measure on theinterior domain of a closed curve. For these cases we rigorously prove the Wardidentities for the current correlation functions and determine them explicitly.For the case g > 0 these functions coincide with those obtained in [21,36]using bosonization. For the case g=0 the tau-function we have defined coincideswith the tau-function introduced in [29,44,24] as a dispersionless limit of theSato's tau-function for the two-dimensional Toda hierarchy. As a corollary ofthe Ward identities, we obtain recent results [44,24] on relations betweenconformal maps of exterior domains and tau-functions. For this case we alsodefine a Hermitian metric on the space of all contours of given area. Asanother corollary of the Ward identities we prove that the introduced metric isKahler and the logarithm of the tau-function is its Kahler potential.
机译:我们研究了g族的紧致黎曼曲面上的自由玻色子的量子场论族。对于g> 0的情况,这些理论通过程度为g-1的全纯线束进行参数化,对于g = 0的情况-通过复平面上的平滑闭合Jordan曲线进行参数化。在这两种情况下,我们都将tau函数的概念定义为该理论的一个分区函数,并对其进行了明确的评估。对于g> 0的情况,tau函数是一个解析扭[3],对于g = 0的情况,其为正则能量闭合曲线的内部域上某个自然伪测度的估计。对于这些情况,我们严格证明了当前相关函数的Wardidentity并明确确定了它们。对于g> 0的情况,这些函数与[21,36]中使用玻色化获得的函数一致。对于g = 0的情况,我们定义的tau函数与[29,44,24]中引入的tau函数一致,作为二维Toda层次结构的Sato tau函数的无色散极限。作为Ward身份的推论,我们获得了关于外部域的保形图和tau函数之间关系的最新结果[44,24]。对于这种情况,我们还要在给定区域所有轮廓的空间上定义一个Hermitian度量。作为Ward身份的另一个推论,我们证明引入的度量是Kahler,tau函数的对数是其Kahler势。

著录项

  • 作者

    Takhtajan, Leon A.;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号